Associations of Body Mass Index and Cardiorespiratory Fitness with Sleep Apnea in Older Adults
Joey M. Saavedra ${ }^{1}$, Elizabeth C. Lefferts ${ }^{1}$, Bong Kil Song ${ }^{1}$, Duck-chul Lee ${ }^{1}$, FACSM
${ }^{1}$ Iowa State University, Ames, IA.

## ABSTRACT

PURPOSE: To estimate the independent and joint associations of body mass index (BMI) and cardiorespiratory fitness (CRF) with prevalent sleep apnea (SA) in older adults. METHODS: This cross-sectional study included 569 individuals aged $65-90(62 \%$ female, ean age 71 years), all of whom were free from myocardial infarction, stroke, and cancer. BMI ( and walk test. Participants were classified as normal weight (BMI<25), overweight $(25 \leq$ BMI $<30$ ), obese class I $(30 \leq$ BMI $<35)$, or obese class II + (BMI $\geq 35$ ). Participants were also divided into sex-specific quartiles ( Q ) of CRF (Q1: least fit, Q4: most fit). Cases of SA were identified by self-reported physician diagnosis from a medical history questionnaire. Multivariable logistic regression was used to estimate the odds ratios (ORs) and 95\% confidence intervals (CIs) of prevalent SA across the four groups of BMI and quartiles of CRF adjusting for age, sex, smoking status, heavy alcohol drinking, and meeting the aerobic 'overweight/ obse' (BMI $\geq 25$ ) , as well as 'fit' (Q2-Q4) or 'unfit' (Q1) to evaluate the association of BMI and CRF on prevalent SA.
RESULTS: There were 81 (14\%) cases of SA. Compared to 'normal weight', the ORs ( $95 \%$ CIs) of SA were 3.80 (1.61-8.95), 4.66 (1.82-11.92), and 12.50 (4.33-36.07) for the overweight, obese class I, and obese class II+ groups, respectively, after adjusting for potential confounde including CRF. Compared to Q1, the ORs ( $95 \%$ CIs) of SA were 0.86 ( $0.43-1.70$ ), 0.88 ( $0.40-$ 1.92 ), 0.80 ( $0.32-2.00$ ), for Q2, Q3, and Q4, respectively, after adjusting for potential confounders including BMI. In the joint analysis, compared to 'normal weight \& fit', the ORs ( $95 \%$ CIs) of SA were 6.73 (2.34-19.4), 4.44 (0.88-22.47), and 10.56 (3.44-32.38) for the overweight/obese \& fit', 'normal weight \& unfit', and 'overweight/obese \& unfit', respectively. CONCLUSIONS: In fully adjusted models, BMI, but not CRF, was significantly associated with prevalent SA in older adults, suggesting that the 'fat-but-fit' paradigm may not extend to sleep apnea. However, prospective studies are warranted.

## INTRODUCTION

Sleep apnea (SA) is prevalent in $25 \%$ of older adults, and is associated with an increased risk of cardiovascular disease. One powerful risk factor of SA is elevated body mass index (BMI). High cardiorespiratory fitness (CRF) often attenuates the association between BMI and age-associated morbidities. However, the impact of CRF on the association between BMI on SA in older adulthood is not well-defined.

## METHODS

PARTICIPANTS: 569 older adults (mean age of 71 years) enrolled in the Physical Activity and Aging Study (PAAS) who reported no history of myocardial infarction, stroke, or cancer

BMI: Body mass in kilograms ( kg ) divided by height in meters squared ( $\mathrm{m}^{2}$ )

CRF: Time to complete the 400 m walk test (minutes), with participants subsequently categorized into sex-ranked quartiles (Q1 = least fit, Q4 = most fit).

SA: Self-reported, physician diagnosis using a medical history questionnaire.

## STATISTICAL ANALYSIS

Participant characteristics were analyzed using general linear models for continuou variables and chi-squared ( $\chi_{2}$ ) for categorical variables. The independent and joint associations of CRF and BMI on SA were determined using multivariate logistic regression (adjusting for potential confounders).

| Table 1. Participant characteristics |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Characteristic | $\underset{(\mathrm{n}=569)}{\mathrm{All}}$ | Cases <br> ( $\mathrm{n}=81$ ) | $\begin{aligned} & \text { Non-cases } \\ & (\mathrm{n}=488) \end{aligned}$ | $P$-value ${ }^{\text {a }}$ |
| Age, years | 71.4 (5.2) | 71.2 (4.8) | 71.5 (5.3) | 0.676 |
| Female | 350 (61.5) | 42 (51.9) | 308 (63.1) | 0.054 |
| вмі | 27.4 (4.9) | 31.1 (5.2) | 26.8 (4.6) | <0.001 |
| BMI category ${ }^{\text {b }}$ |  |  |  |  |
| Normal weight | 197 (34.6) | 7 (8.6) | 190 (38.9) | <0.001 |
| Overweight | 225 (39.5) | 32 (39.5) | 193 (39.6) |  |
| Obesity class I | 105 (18.5) | 22 (27.2) | 83 (17.0) |  |
| Obesity class II | 42 (7.4) | 20 (24.7) | $22(4.5)$ |  |
| Smoking status |  |  |  |  |
| Never | 393 (69.1) | 55 (67.9) | 338 (69.3) | 0.97 |
| Former | 169 (29.7) | 25 (30.9) | 144 (29.5) |  |
| Current | 7 (1.2) | 1 (1.2) | 6 (1.2) |  |
| Heavy drinking ${ }^{\text {c }}$ | 48 (8.4) | 5 (6.2) | 43 (8.8) | 0.429 |
| 400 m walk time, | 4.5 (0.9) | 4.9 (1.4) | 4.4 (0.8) | <0.001 |
| Meets aerobic PAG ${ }^{\text {d }}$ | 407 (71.5) | 47 (58.0) | 360 (73.8) | 0.004 |
| Comorbidities |  |  |  |  |
| Hypertension | 339 (59.6) | 61 (75.3) | 278 (57.0) | 0.002 |
| Diabetes | 54 (9.5) | 15 (18.5) | 39 (8.0) | 0.003 |
| Asthma | 39 (6.9) | 10 (12.3) | 29 (5.9) | 0.035 |
| COPD | 6 (1.1) | 1 (1.2) | 5 (1.0) | 0.865 |

##  <br>  <br> 

Table 2. Adjusted odds ratios ( $95 \%$ confidence intervals) of SA by BMI and CRF

|  | Cases (\%) | No. of participants | Model $1^{\text {a }}$ | Model $2^{\text {b }}$ | Model $3^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| вмI |  |  |  |  |  |
| Normal weight | 7 (3.6) | 197 | $\begin{gathered} 1.00 \\ \text { (Reference) } \end{gathered}$ | $\begin{gathered} 1.00 \\ \text { (Reference) } \end{gathered}$ | $\begin{gathered} 1.00 \\ \text { (Reference) } \end{gathered}$ |
| Overweight | 32 (14.2) | 225 | $\begin{gathered} 4.32 \\ (1.85-10.06) \end{gathered}$ | $\begin{gathered} 3.88 \\ (1.65-9.13) \end{gathered}$ | $\begin{gathered} 3.80 \\ (1.61-8.95) \end{gathered}$ |
| Obesity class I | 22 (21.0) | 105 | $\begin{gathered} 6.78 \\ (2.76-16.64) \end{gathered}$ | $\begin{gathered} 5.50 \\ (2.20-13.80) \end{gathered}$ | $\begin{gathered} 4.66 \\ (1.82-11.92) \\ \hline \end{gathered}$ |
| Obesity class II | 20 (47.6) | 42 | $\begin{gathered} 24.12 \\ (9.14-63.99) \end{gathered}$ | $\begin{gathered} 17.08 \\ (6.22-46.91) \end{gathered}$ | $\begin{gathered} 12.50 \\ (4.33-36.07) \end{gathered}$ |
| $P$ for linear trend |  |  | <0.001 | <0.001 | 0.094 |
| CRF $^{\text {d }}$ |  |  |  |  |  |
| Q1 (Least fit) | 33 (23.1) | 143 | $\begin{gathered} 1.00 \\ \text { (Reference) } \end{gathered}$ | $\begin{gathered} 1.00 \\ \text { (Reference) } \end{gathered}$ | $\begin{gathered} 1.00 \\ \text { (Reference) } \end{gathered}$ |
| Q2 | 21 (14.9) | 141 | $\begin{gathered} 0.51 \\ (0.27-0.95) \end{gathered}$ | $\begin{gathered} 0.60 \\ (0.32-1.14) \end{gathered}$ | $\begin{gathered} 0.86 \\ (0.43-1.70) \end{gathered}$ |
| Q3 | 16 (11.2) | 143 | $\begin{gathered} 0.34 \\ (0.17-0.68) \end{gathered}$ | $\begin{gathered} 0.47 \\ (0.23-0.95) \end{gathered}$ | $\begin{gathered} 0.88 \\ (0.40-1.92) \end{gathered}$ |
| Q4 (most fit) | 11 (7.7) | 142 | $\begin{gathered} 0.21 \\ (0.10-0.47) \end{gathered}$ | $\begin{gathered} 0.33 \\ (0.14-0.74) \end{gathered}$ | $\begin{gathered} 0.80 \\ (0.32-2.00) \end{gathered}$ |
| $P$ for linear trend |  |  | <. 0001 | 0.005 | 0.650 |
| Abbreviations: No, number; BMI, body mass index; CRF, cardiorespiratory fitness. ander and 1 di, <br>  <br> adiusted for Model $2+$ CRF (in the BMI analysis) or BMI (in the CRF analysis). duuartiles of CRF were based on the sex-ranked distribution of 400 m walk time amon <br> the current sample (faster completion indicates greater CRF). |  |  |  |  |  |



Figure 1. The combined associations of BMI and CRF on prevalent SA in older adults.

 CONCLUSIONS
Higher BMI was significantly associated with greater odds of prevalent SA even after adjusting for CRF.

Higher CRF was significantly associated with lower odds of prevalent SA, however this relationship was attenuated when adjusting for BMI.

Being unfit and overweight/obese had the greatest odds of prevalent SA, suggesting this is the worst phenotype for SA in older adulthood.

Being fit and overweight/obese was also associated with high odds of prevalent SA, suggesting the 'fit-but-fat' phenotype may not be protective against SA in older adulthood.

Prospective studies with larger sample sizes are needed to confirm our findings

## LIMITATIONS

Cross sectional design (cannot establish causation)

- Predominantly white and well-educated sample (low external validity). - SA was self-reported (potential for misclassification bias).


## PUBLIC HEALTH MESSAGE

Maintain a normal BMI (healthy body weight) to reduce the likelihood of SA in older adulthood, but don't discount the potential added benefits of high CRF.

